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Thermal rate constants have been calculated for the titled reaction for total angular mondentOmasing

the quantum flux correlation function methodology of Thompson and Miller [Thompson, W. H.; Miller, W.

H. J. Chem. Physl995 102, 7409]. This generalizes earlier work by two of us [Germann,T. C.; Miller, W.

H. J. Phys. Chem. A997 101, 6358] forJ = 0. A helicity conserving approximation (HCA) is used for the
present] > 0 calculations, and it and other approximations for treafirrg O are discussed and compared.

The results show that for this reaction the much simplghifting approximation (JSA) is reasonably accurate

(to 10-20% in the rate constants), provided the appropriate choice is made for the reference geometry in this
approach.

I. Introduction however, because tlledependence of thig(T) is usually very
simple; one can thus perform the calculation for a few widely
spaced values af and then interpolate to evaluate the sum in
eq 1.19).

Section 1l first briefly summarizes the methods used to
calculate the rate constant (for ea}ha fully rigorous quantum
mechanical approach based on reactive flux correlation meth-
ods!”18 Section Il then describes the helicity conserving
approximation (HCA) used for the preseht 0 calculations.

A more general HCA is also described in section Ill, one based
on the instantaneous principal axes of the molecular system,
and an even wider range of possible approximations) farO
calculations is also surveyed that may be useful in other
assumes that rotational motion is separable from the otherzlggl'gg&r;eg?r? ;Ziltjilct)if(lj\;thﬁ ;i)sress:grt] r;g;t't%r; iri?n‘;rlgztenjgd
degrees of freedom and furthermore that it is that of a rigid approximation is not so bad-L0—20% error) for the present

rotor (with some assumed geometry). The purpose of the reaction, provided the proper choice is made for the reference
present paper is to report the results of more accurate calcula- P prop

tions forJd > 0, to test the accuracy of the JSA, and see to what geometry.
extent it is reliable for this reaction. We note that there have
been some previous calculations fbr 0: those by Wu and

In a recent papéertwo of us presented the results of rigorous
guantum mechanical calculations of the rate constant of the
reaction O+ OH=H + O, (and also recombination to HO
via collisional relaxation by a bath gas). Because of its
importance in combustion and atmospheric mod@fihghis
reaction has been the focus of many studies}, classical
trajectory simulation$,statistical (RRKM) ratéand quantum
scattering calculation;!! and also studies of the H®ound?2
and metastable stat&%.Our previous calculations, however,
were only carried out explicitly for zero total angular momentum
(J = 0), the contribution to the rate constant fbr 0 being
approximated by theJ:shifting” approximation (JSA}? which

II. Summary of the Rate Constant Calculation

Hayed? for bound state energy levels of H@r J up to 3, and A. General Theory. Within the HCA (see section Ill below)
those by Meijer and Goldfield for total reaction probabilities  the calculation of the rate constant fbr 0 is the same as that
of H+ O, (v=0,j=1)forJ=0, 1, 2, and 5. for J = 0 with an effective potential energy surfa®ex that

How to deal with thel > 0 contribution to the thermal rate  depends parametrically ahandK, the projection of the total
constants is a nontrivial matter, particularly so for the present angular momentum onto a body-fixed axik. (the helicity) is
reaction which is extremely challenging even §o= 0 because ~ assumed to be conserved in the HCA, dg@) of eq 1.1 is
of the existence of a long-lived collision complex. Atthe most given by
rigorous level of theory the quantum mechanical calculation of

the rate constant is carried out separately for each value of J
and the total rate constant is the sum of those for gach k(T) = z Kk(T) (2.1)
K==3
_ c wherek;k(T) is the result of the rate constant calculation with
k() ZO(ZJ + k(M) (1.1) the effective potentiaV/s.

The rate constant calculation is carried out as béfimreeach
value of J and K. As discussed there, because the reaction

Typically many values od contribute to this sum, the more so . : e ;
proceeds via a long-lived collision complexe.,

the higher the temperature, and the calculation for eh&h
more difficult than forJ = 0 because there is an additional .
coupled degree of freedom. (Matters are not quite so bleak, O+ OH=HO,—~H+ 0, (2.2)
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Figure 1. Contour plot of the HQDMBE IV potential energy surfaég
for a colinear ¥ = 0) geometry. The reactant and product dividing
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these eigenvectors, giving

KD =QM Y2 [y dt BOIF®D  (2.6)
where |i(t)Tis the time-evolved vector
(0= e 0 2.7)

We used the split operator algorithm to carry out this time
evolution, though other methods for wave packet propagation
could also be used.

We note that the general principle in this type of calculation
is to choose the dividing surface at the position for wHi¢f)
will be of the lowest rank possible, so as to minimize the number
of vectors which must be time evolved (eq 2.7). This will
typically (but may not always) be the dividing surface through

surfaces are shown by thick lines. The shaded areas are absorbingn€ highest energy transition stateg, F in Figure 1. This

potentialsé(R,r) which start at the thin lines and increase to the edge
of the DVR grid.R andr are shown in atomic units.

it is useful to compute the rate constant as the time integral of

acrosscorrelation function rather than as a flamtocorrelation

function as has been most commonly done in other applications

kT = QM [, dt Cit) (2.3)
whereQ,(T) is the reactant partition function per unit volume
and Cyy(t) is given by,

Cyplt) = tr[e V2R g PHI2dHIE iy (2.4)
Here the flux operators;, andF,, are defined with respect to
two different dividing surfaces, one on the reactant{OH)
side of the H(§ complex region and the other on the product(H
+ Oy) side, respectively; see Figure 1. (For simplicity of
presentation, the Hamiltonian in eq 2.4, and elsewhere in
Sections lla and b, is not labeled by the specifid() value of
the calculation.)

The most efficient way we have yet developed for evaluating
these flux correlation functions is that described by Thompson
and Miller*® which has been used before for thetOHCI —

OH + Cl?and Cl+ H, — HCI + H6 reactions, as well as our
earlierd = 0 calculations for the present reactibr{One should
also see the work of Lighat al?! and Matzkies and MantR&
which has features similar to our approach.) The first step in
this approach is a Lanczos iteration calculatfoto find the
relatively small number of nonzero eigenvaldgsand corre-
sponding eigenvectols;[Jof the Boltzmannized flux operator

F (B) = e P2 g P12 (2.5a)
which can then be represented as
F(B) = Alva| (2.5b)
1

The Lanczos procedure is particularly efficient becakigs)
is of low rank,i.e., has a small number of nonzero eigenvalues

eature of the procedure is very reminiscent of the variational
character of transition state thedfwhere one chooses the
dividing surface to minimize the number of states of the
activated complex. In the present (fully dynamical) approach
the final result for the rate constantfrmally independent of
'where the dividing surface(s) is(are) located but éffeciency

of the calculation is not.

B. Computational Specifics. A discrete variable represen-
tatior?” (DVR) basis was used to represent the wave function
at a set of grid points. The underlying finite basis consists of
Fourier functions in the and R coordinates and associated
Legendre functions in thg coordinate. A basis set using 64
x 128 x 32 grid points in theR,r,y coordinates, respectively,
was found to be adequate for the present calculations.

Both the thermal and real time propagation was carried out
using the following split-operatét factorization of the full
qguantum propagator,

—i(H-ioAt _

—ifrAt —iTAt —

o i(V-iav2 —if,Av2 g e e

e it,Av2 efi(\A/fi%)Atlz (2.8)
which expresses (with = 1) the full propagator as a series of
one-dimensional kinetic energy operators which can be applied
efficiently within the DVR formulation. In order to apply each
operator, one transforms to a basis in which the operator is
diagonal. For andR these are Fourier transforms and for
Legendre transforms. Denoting these transformations as unitary
matrices one has

.. —h2(j — NRIZ)) )
T.=0!_.diag——|0 2.9a
R FFT 4 ZuAR2 FFT ( )
L —h%( — N /2)) X
T =0 diag—|0 2.9b
r FFT 4 oA FFT ( )
=0/, diag(—hZJ(J + 1)(i + L))ULeg (2.9¢)
4 uR?  2mr

where diag is a matrix with only diagonal entries (indexed by

(approximately twice the number of thermally accessible statesj), Nr and N, are 64 and 128 respectively, arlfﬂ_eg is the

on the reactant dividing surface). Figure 2 shows the positive
eigenvalues of(8) for temperature§ = 600 and 1000 K,
showing how the number increases with (The eigenvalues
occur in+ pairs, with the eigenvector of the negative eigenvalue
being the complex conjugate of that for the positive eigen-
value.¥*?> The trace in eq 2.4 is then evaluated in the basis of

Legendre transformation which includes the first 32 odd
associated Legendre polynomials. (Only odd Legendre poly-
nomials incogy) are included because the wave functions must
be odd under interchange of the two identical oxygen atéins.
A time stepAt = 10 au was used for the thermal propagation
and 20 au for the real time propagation. For all calculations
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Figure 2. The positive thermal flux eigenvalues at 600 K and 1000 K
for J = 0 for the dividing surface at the-©@OH transition state.
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Figure 3. The cross correlation functio@yy(t) for several values af.
the number of thermal flux eigenvectors included is determined

by the temperature alone. At= 600 K 20 eigenvectors were
propagated and dt= 1000 K 40 eigenvectors were propagated.

Skinner et al.

Figure 4. The Jacobi coordinates for the molecular system.

A=T,+T+ ZL; JT; FVRry)  (3.1)
where
N h® h® o
R 2upr 7 2my?

I and]j are the angular momentum operators for Band r
angular motion, respectively, and is the potential energy
surface. The usual helicity (¢5) conserving approximatich

is to chooseR as the body-fixed quantization axis and to assume
that the projection of total angular momentum along it is
conservedj.e., to neglect off-diagonal matrix elements in the
guantum numbekK, the projection quantum number for this
body-fixed axis.

This would be a poor choice for the present reaction, however,
because the kinematics of the light H atom makes this
component of the total angular momentum poorly conserved
during the dynamical motion. Choosing the best body-fixed
axis for purposes of making a helicity conserving approximation,
i.e, neglect ofAK = 0 matrix elements, is the same choice
microwave spectroscopists make in deciding on the best “almost
symmetric top” axis for molecular rotatioii;e.g, if the body-
fixed axis were indeed a symmetric top axis, the€mould be

The real-time propagation of the eigenvectors is the most time ¢onserved without approximation. From these considerations

carried out on a Cray T3D parallel computer and required
approximately 1 h/eigenvector in the 64 processor queue.
The dividing surface for reactants (®© OH) is defined by
= 6.5 gy and that for products (H- O,) by R= 6 a,. The
same dividing surfaces were used for all calculations. As in
several other studies of HQve use the DMBE IV potential
energy surface of Pastraea al3° for our calculations.
Absorbing potential€(qg) were placed just beyond each of
these dividing surfaces to prevent reflection of reactive flux from

better,i.e., nearly symmetric top, choice for the body-fixed axis
is the O-0 axis,i.e., the vector. This idea of using the heavy
atom axis in a “heavyt light-heavy” mass combination has
often been used in the paStthe analogy of the electron in
H, often being invoked. We also note that it was used by
Thompson and Miller in their treatméftof the O+ HCI —
OH + Cl reaction.

With r thus chosen as the body-fixed axis, one follows Van
Vleck’s prescription and uses total angular momentum conser-

the edge of the DVR basis. The reactant and product absorbingyation to eliminate the angular momentum for this a§s (

potentials start at= 7.2ap andR = 6.8 &g, respectively. Both
are quartic potentials which rise from zero to a maximum of
0.3 to 0.5 eV. Figure 1 shows a schematic of the dividing
surfaces and absorbing potentials.

Figure 3 shows typical results for the flux correlation function,
here forT = 600 K and for several values of totil The~1
ps time scale for the decay of the correlation functioa, the
lifetime of the collision complex, is seen not to vary much with
J.

lll. Approximate Treatments for J > 0

A. The Helicity Conserving Approximation. Figure 4
shows the Jacobi coordinates that we -tses the G-O
coordinate an® is that of H and the center of mass of-Q—in
terms of which the Hamiltonian has the standard form

N ~

j=3-1 (3.2)
so that the Hamiltonian becomes
ST I N Sl R (3.3)
RO uR 2mP

The HCA is obtained by taking the part of the Hamiltonian
diagonal inK, which gives

|:|JK = |:|J:o + Ej(Rryy) (3.4a)

where

H_,=Tg+T + ?V + V(R,y) (3.4b)
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with
s o G | S
T,=-h (ayz + cotyay)(zﬂR2 + 2mr2) (3.4c)
and
_Je+n-2k* . K (1 1
B e = 2mr2)

(3.4d)

The effective potential energy surface fb~ 0 alluded to in
section Il is thus
VJK(er!y) = V(er!)/) + EJK(R!er) (35)

the actual potential plus a centrifugal potential that is the
rotational energy of the molecular complex as a function of the
coordinatesR,r,y) that determine its shape. We note tBat

can also be written in standard symmetric top form,

E,(Rry) = BRry)(J@+ 1) — K% + C(Rr,y)K* (3.6a)

where the rotational “constants” are (with= 1)

_ (1  cog y) :
C(Rr,y) (Zu R2+ o Isir? y (3.6¢)

B. The J-Shifting Approximation. The J-shifting ap-
proximation (JSA) results by assuming that the rotational
constants in eq 3.6 are truly constants,

B(Rr,y) — B =B(R 1" " (3.7a)

C(Rry)—C =CFR )" (3.7b)

corresponding to some reference geome®yr{,y*). Since the
Hamiltonian forJd > 0 then only differs from that o = 0 by
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At the level of the JS approximation it is not neccessary to
assume that the rigid molecular system has a symmetric top
geometry. If it is that of an asymmetric rotdre., all three
rotational constantsA*, B*, and C* are different, then the
classical partition function of eq 3.8e becomes

a(kT)®
AB'CF

Q= (3.8f)

which can be thought of as the same as the symmetric top

expression eq 3.8e with the replacemBht— v A'B".

C. Principal Axis Helicty Conserving Approximation.
For the present molecular system the-O axisr is a very
nearly symmetric top axis because of the lightness of the H
atom, but in other cases it may be that neitRenor r is a
good choice. Thus some years ago McCurdy and Miller
suggested using one of the instantaneous principal axes of the
molecular system as the body-fixed axis for purposes of making
a HC approximation. This was motivated by the way micro-
wave spectroscopists make the “best symmetric top” ap-
proximation for molecular rotation and also by the desire to
have a body-fixed axis that changes continuously from reactants
to products during a chemical reaction.

McCurdy and Miller used the classical form of the Hamil-
tonian, obtained by taking the classical limit of the quantum
Hamiltonian operator given by Diellet al.,

1 1
H(R PRI Pry.P, K ) =5, (PR~ AP’ + 5P, —

1 1
A 2+(—+—) — Ap,)? + V(RIy) +
Yo% %

where gk is the angle variable conjugate to the projection
“quantum number” (actually action variabli) and the other
coordinates and moments are as befakei = 1, 2, and 3, are
the components of the angular momentum along the three
instantaneous principal axes, amdare the corresponding

a constant, it is easy to see that the equations in section Il leadPrincipal moments of inertia, ordered so that< 1> < I3 =13

to
ko(T) = ky_o(T)E 7556 (3.82)

where
El=B'(J0+ 1) — K} + C'K? (3.8b)

The sums oved andK in egs 1.1 and 2.1 then give

K(T) = Ky-o(M Qo (3.8¢)
wherleOt is the rotational partition function,
0 J
Q= Zo(za +1) Y g ik (3.8d)
= K==J

which is usually accurately approximated by its classical limit

KT [T

— = (3.8¢)

+
Qrot = B*

if Bf and G < kT.

=+ 1, (for this planar molecular system); specifically

L, — 1, =V (WR’ + (mP? + 2uRmrcos(2/)  (3.10a)

I, + 1, = uRe + mr? (3.10b)

The vibrational angular momentum termgg, Ap;, and Ap,
in eq 3.9 are given by

21,1
Apg = —JS—“Z% (3.11a)
('2 - |1)
21, cos
Ap, = 3%—} (3.11b)
(|2 - |1)
21,1,  (uR? — mr)siny
Ap, = 3.11c
Py 3('2_|1)2 I+ 1, ( )

and if principal axis 1 (the one with the smallest moment of
inertia) is chosen as the body-fixed quantization axis, then

=K (3.12a)
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_ 2 _ 2 which is then identical to the principal axis HC approximation
J, = V7 = K'cosgy (3.12b) if the vibrational angular momentum terms are neglected (as

McCurdy and Miller originally did).
;=W J* — K3sin O« (3.12¢) To complete this discussion the range of possible approxima-

tions forJ > 0 it is useful to consider the opposite limit for the
The classical version of the HC approximation, which corre- rotational motion, namely that it is mustowerthan the internal
sponds to the quantum prescription of taking the matrix elements (Rr,y) motion. This is the rotational sudden approximation
of H diagonal inK, is obtained byaveraging the classical (SA) which has a long history in molecular collision theéfy.
Hamiltonian over the angle variabdg In doing this, McCurdy In the present context this would mean freezing the rotational
and Miller neglected the contribution from the vibrational variables ,K,qx) in the Hamiltonian eq 3.9, computing the rate
angular momentum terms, but it is not necessary to do so. Theconstant as a parametric function of these variables, and then
averaging process is straight forward, averaging that result over the variables for the rotational degrees
of freedom. The net rate constant would thus be given by

1 pron
E|"DE E 0 qu... ) , Zﬂqu
k(M) = fdI2J " dK [ 5. KT 3K, q) (3.17a)
so that
K= K wherek(T; J, K, g is the rate constant computed from the
Hamiltonian that depends parametrically an K, gk):

Sing0= [Bosq[=0 ) 2 g

1 2 3
. H(@J, K, =H, tz=—+t+= 3.17b
Bin® g = @o¢ q =1, (2, K, g = Hy-o 21, 2, 21 ( )

and it is not hard to carry this out to obtain an HC Hamiltonian K2 5 ) co< (0% sir? O«
of the same form as eq 3.4a, =H;,+ h + (- K9 o + o (3.17¢)

1 2 3

_ 2 2
Hak(RPRIPY.P,) = Hymo + BRIY)(I™ = K + where we have for simplicity dropped the vibrational angular

C(R,r,;/)K2 (3.13) momentum terms (they could be retained if desired). This
approximation is somewhat more costly to implement than the
PA/HCA because the result of the calculation now depends on
the three parameters, (K, gk) rather than just two,J K). In

whereH;— is the same as eq 3.4b and here

C(Rry)= % (3.14a) the symmetric top limit], = I3, however, one sees that the
1 dependence in eq 3.17c disappears and one is again back to the
same expression as the PA/HCA. Thus if the internal dynamics
B(Rry)="1Y 1 42 1 (3.14b) is confined to molecular geometries that are well approximated
4 | 2
2 (I I as a symmetric top, one obtains the same effective Hamiltonian

whether rotation is treated as fast or slow. Finally, itis easy to

In the limit uR? < mr? it is not hard to show that the rotational ~ show that eq 3.17a for the sudden approximation can be written
constants in eq 3.14 revert to those in eq 3.6. as

D. Some Further Thoughts onJ > 0 Approximations.
The helicity conserving approximations discussed above try to k(T) = ifd J K(T; J) (3.18a)
identify a body-fixed axis which is an almost symmetric top 2nJ 3 '
axis for the molecular geometries relevant to the dynamics, so .
thatK (the helicity) is conserved during the dynamics, speaking With
classically, or a good quantum number, speaking quantum 1
mechanically. H;=H,_,+ EJ-I (Rr,y)™J (3.18b)

From a very different perspective Bown#mas suggested
using anadiabatic rotation(AR) approximation, which would
be justified dynamically if the rotational motiori,e. ok,
classically, were fast compared to the interriaf ) motion.
In this case one proceeds as in the Be@ppenheimer gy eyajuating the integral overin spherical coordinates(6,
approximationj.e., freezes theRr,y) degrees of freedom and

solves for the rotational energy levels of the (in general) )

asymmetric rotor,E;.(Rr,y), as a function of the internal o v . 21
geometry. The Hamiltonian for the internal motion is then fd3‘] - ﬁ) dJ ‘)zfo do sin ¢ 0 dep (3.19)

which makes it clear that this approximation is completely
independent of how the body-fixed axis is chosem, it is
not even necessary in eq 3.18b that the inertia tensor be diagonal.

S

|2|JT = |3|J:O + E,(Rr,y) (3.15) one can show that eq 3.18a is equivalent to eq 3.17a.

i.e, of the same form as that for the HCA, eq 3.4 or eq 3.13. In IV. Results and Discussion

fact, if the asymmetric rotor energy levels are approximated as  The HCA described in section llla was used for the 0

an almost symmetric tepwhich is often a very good  cgculations reported here. This should be an excellent ap-
approximation-then proximation for this reaction because the-O axis is such a

5 5 good “almost symmetric top” axi€.g, in Table 1 one sees
Ex(Rry) = BRry)(JJ + 1) — K) + C(Rr,y)K" (3.16) how close are the two smallest rotational constayitand B
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TABLE 1: Rotational Constants and Partition Functions at TABLE 3: Rate Constants in cm® molecule™® s71 for H +
Fixed Geometries 0O, — 0+ OH
Q, Q, method k(600 K) x 10 k(1000 K) x 10
geometry  A¥fcm™' Bffcm! C¥cm' (600 K) (1000 K) JSA (HQ, minimum) 132 352
HO, minimun?  1.051  1.115 2051 3069 6603 JSA (O--OHTS) 3.39 9.03
O--OH TS 0.286  0.287 4452 7897 16971 HCA 4.12 10.3
HCA TS 0.290 0.290 45.00 9647 19350 experimerit 3.72 9.1

a Exact rotational constants of the three atom system at the indicated ® The rate constant at 600 K was extrapolated from a measurement
geometry.’ Rotational constants of the-©@OH geometry implied by of k}(520 K) by Howard and Smith using the experimentally
the HCA eq 3.6. determined equilibrium constafft.The rate constant at 1000 K was

measured by Eberiust al*3
TABLE 2: Parameters Describing the Dependence ok;k(T)

onJ and K in Equation 4.1 complex (H@ spends most of its time in the region about the

temperature/K  afem™ bicm™t B/cm™ Clem? HO, minimum, it was not obvious that this latter geometry might
600 —3.14 77.7 0.318 1.65 not be a better choice in this case. The minimidmesseem to
1000 —2.37 62.7 0.336 18.3 be the best choice for the JSA in describing resonance en&rgies
. of the HCO complex, a very similar system. For the rate
at both the geometry of the HOninimum and the ©-OH constant, however, we see that in this case, too, the transition

transition state. One also sees how close are the exact rotationag; e geometry is the best choice for the JSA.
constants of the ©-OH transition state and those implied by

. This latter observation,e., that the transition state geometry
the HCA (eq 3.6) at this geometry.

ithin th h h culati ‘ h provides the best choice of reference geometry for the JSA in

Within the HCA, however, the calculation &fi(T) for eact both “complex-forming” as well as “direct” reactions, is thus
(J, K) is equivalent in effort to th&—o(T) calculation, whichis 55 ancouraging one, for the JSA is by far the simplest way of
itself already a very expensive calculation due to the the small dealing withd > 0O if the choice of reference geometry is
grid spacing that is necessary bef:ause of th? deep potential We'bnambiguous. The full dynamical calculation is then required
and also the long propagation times resulting from the long- oy for 3 = 0, an enormous simplification. It is important,
lived complex. It is therefore very important to minimize the 1, yever, to have the possibility of carrying out more accurate
number of ¢, K) yalues for which calculations are actu_ally treatments ofl > 0, as discussed in section Ill, to calibrate its
performed. To this end thd,(K) dependence dé(T) was fit reliability, as in the present application.

to the following functional form Finally, we note from Table 3 that the rate constants given
_ 2 by the HCA (and the JSA with the-©OH reference geometry)

IN[ks(M/koo(N] = =p{ad + bIK| + BJJI + 1) = KT + with this potential surface are in quite good agreement with

CK% (4.1) the experimental values. To pursue matters further, it would

o o be useful to utilize the more recent and presumably more

which is sufficiently accurate for the range #ndK values accurate potential energy surface developed by Kendrick and

that contribute. Adding terms of higher orderJrandK did Pack® and also to deal explicitly with the electronically non-
not affect to result for the total rate constant. Between 15 and agjabatic dynamics arising from the spiarbit coupling in this

19k(T) were calculated to perform this fit at each temperature. gystem,
The values of, b, B, andC determined from the fit and used
for the interpolation are given in Table 2. The sum o¥end Acknowledgment. We thank Claude Leforestier for provid-
K to obtain the total rate thus gives the same form as the JSA:ing the DMBE IV potential subroutine. This work has been
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