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Thermal rate constants have been calculated for the titled reaction for total angular momentumJ > 0 using
the quantum flux correlation function methodology of Thompson and Miller [Thompson, W. H.; Miller, W.
H. J. Chem. Phys.1995, 102, 7409]. This generalizes earlier work by two of us [Germann,T. C.; Miller, W.
H. J. Phys. Chem. A1997, 101, 6358] forJ ) 0. A helicity conserving approximation (HCA) is used for the
presentJ > 0 calculations, and it and other approximations for treatingJ > 0 are discussed and compared.
The results show that for this reaction the much simplerJ-shifting approximation (JSA) is reasonably accurate
(to 10-20% in the rate constants), provided the appropriate choice is made for the reference geometry in this
approach.

I. Introduction

In a recent paper,1 two of us presented the results of rigorous
quantum mechanical calculations of the rate constant of the
reaction O+ OH h H + O2 (and also recombination to HO2
via collisional relaxation by a bath gas). Because of its
importance in combustion and atmospheric modeling2-5 this
reaction has been the focus of many studies,e.g., classical
trajectory simulations,6 statistical (RRKM) rate7 and quantum
scattering calculations,8-11 and also studies of the HO2 bound12

and metastable states.13 Our previous calculations, however,
were only carried out explicitly for zero total angular momentum
(J ) 0), the contribution to the rate constant forJ > 0 being
approximated by the “J-shifting” approximation (JSA),14which
assumes that rotational motion is separable from the other
degrees of freedom and furthermore that it is that of a rigid
rotor (with some assumed geometry). The purpose of the
present paper is to report the results of more accurate calcula-
tions forJ> 0, to test the accuracy of the JSA, and see to what
extent it is reliable for this reaction. We note that there have
been some previous calculations forJ > 0: those by Wu and
Hayes12 for bound state energy levels of HO2 for J up to 3, and
those by Meijer and Goldfield15 for total reaction probabilities
of H + O2 (V ) 0, j ) 1) for J ) 0, 1, 2, and 5.
How to deal with theJ > 0 contribution to the thermal rate

constants is a nontrivial matter, particularly so for the present
reaction which is extremely challenging even forJ) 0 because
of the existence of a long-lived collision complex. At the most
rigorous level of theory the quantum mechanical calculation of
the rate constant is carried out separately for each value ofJ,
and the total rate constant is the sum of those for eachJ,

Typically many values ofJ contribute to this sum, the more so
the higher the temperature, and the calculation for eachJ is
more difficult than forJ ) 0 because there is an additional
coupled degree of freedom. (Matters are not quite so bleak,

however, because theJ dependence of thekJ(T) is usually very
simple; one can thus perform the calculation for a few widely
spaced values ofJ and then interpolate to evaluate the sum in
eq 1.116).
Section II first briefly summarizes the methods used to

calculate the rate constant (for eachJ), a fully rigorous quantum
mechanical approach based on reactive flux correlation meth-
ods.17,18 Section III then describes the helicity conserving
approximation (HCA) used for the presentJ > 0 calculations.
A more general HCA is also described in section III, one based
on the instantaneous principal axes of the molecular system,
and an even wider range of possible approximations forJ > 0
calculations is also surveyed that may be useful in other
applications. The results for the present reaction are presented
and discussed in section IV. It is seen that the simplest, JS
approximation is not so bad (∼10-20% error) for the present
reaction, provided the proper choice is made for the reference
geometry.

II. Summary of the Rate Constant Calculation

A. General Theory. Within the HCA (see section III below)
the calculation of the rate constant forJ> 0 is the same as that
for J ) 0 with an effective potential energy surfaceVJK that
depends parametrically onJ andK, the projection of the total
angular momentum onto a body-fixed axis.K (the helicity) is
assumed to be conserved in the HCA, andkJ(T) of eq 1.1 is
given by

wherekJK(T) is the result of the rate constant calculation with
the effective potentialVJK.
The rate constant calculation is carried out as before1 for each

value of J and K. As discussed there, because the reaction
proceeds via a long-lived collision complex,i.e.,

k(T) ) ∑
J)0

∞

(2J+ 1)kJ(T) (1.1)

kJ(T) ) ∑
K)-J

J

kJK(T) (2.1)

O+ OHh HO2
q f H + O2 (2.2)
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it is useful to compute the rate constant as the time integral of
across-correlation function rather than as a fluxautocorrelation
function as has been most commonly done in other applications,

whereQr(T) is the reactant partition function per unit volume
andCrp(t) is given by,

Here the flux operators,F̂r andF̂p, are defined with respect to
two different dividing surfaces, one on the reactant(O‚‚‚OH)
side of the HO2

q complex region and the other on the product(H
+ O2) side, respectively; see Figure 1. (For simplicity of
presentation, the Hamiltonian in eq 2.4, and elsewhere in
Sections IIa and b, is not labeled by the specific (J, K) value of
the calculation.)
The most efficient way we have yet developed for evaluating

these flux correlation functions is that described by Thompson
and Miller,19 which has been used before for the O+ HCl f
OH+ Cl20 and Cl+ H2 f HCl + H16 reactions, as well as our
earlierJ) 0 calculations for the present reaction.1 (One should
also see the work of Lightet al.21 and Matzkies and Manthe22

which has features similar to our approach.) The first step in
this approach is a Lanczos iteration calculation23 to find the
relatively small number of nonzero eigenvaluesλi and corre-
sponding eigenvectors|Vi〉 of the Boltzmannized flux operator

which can then be represented as

The Lanczos procedure is particularly efficient becauseF̂r(â)
is of low rank,i.e., has a small number of nonzero eigenvalues
(approximately twice the number of thermally accessible states
on the reactant dividing surface). Figure 2 shows the positive
eigenvalues ofF̂r(â) for temperaturesT ) 600 and 1000 K,
showing how the number increases withT. (The eigenvalues
occur in( pairs, with the eigenvector of the negative eigenvalue
being the complex conjugate of that for the positive eigen-
value.)24,25 The trace in eq 2.4 is then evaluated in the basis of

these eigenvectors, giving

where|Vi(t)〉 is the time-evolved vector

We used the split operator algorithm to carry out this time
evolution, though other methods for wave packet propagation
could also be used.
We note that the general principle in this type of calculation

is to choose the dividing surface at the position for whichF̂(â)
will be of the lowest rank possible, so as to minimize the number
of vectors which must be time evolved (eq 2.7). This will
typically (but may not always) be the dividing surface through
the highest energy transition state,e.g., F̂r in Figure 1. This
feature of the procedure is very reminiscent of the variational
character of transition state theory,26 where one chooses the
dividing surface to minimize the number of states of the
activated complex. In the present (fully dynamical) approach
the final result for the rate constant isformally independent of
where the dividing surface(s) is(are) located but theefficiency
of the calculation is not.
B. Computational Specifics. A discrete variable represen-

tation27 (DVR) basis was used to represent the wave function
at a set of grid points. The underlying finite basis consists of
Fourier functions in ther and R coordinates and associated
Legendre functions in theγ coordinate. A basis set using 64
× 128× 32 grid points in theR,r,γ coordinates, respectively,
was found to be adequate for the present calculations.
Both the thermal and real time propagation was carried out

using the following split-operator28 factorization of the full
quantum propagator,

which expresses (withp ) 1) the full propagator as a series of
one-dimensional kinetic energy operators which can be applied
efficiently within the DVR formulation. In order to apply each
operator, one transforms to a basis in which the operator is
diagonal. Forr andR these are Fourier transforms and forγ
Legendre transforms. Denoting these transformations as unitary
matrices one has

where diag is a matrix with only diagonal entries (indexed by
j), NR and Nr are 64 and 128 respectively, andÛLeg is the
Legendre transformation which includes the first 32 odd
associated Legendre polynomials. (Only odd Legendre poly-
nomials incos(γ) are included because the wave functions must
be odd under interchange of the two identical oxygen atoms.29)
A time step∆t ) 10 au was used for the thermal propagation

and 20 au for the real time propagation. For all calculations

Figure 1. Contour plot of the HO2 DMBE IV potential energy surface29

for a colinear (γ ) 0) geometry. The reactant and product dividing
surfaces are shown by thick lines. The shaded areas are absorbing
potentialsε̂(R,r) which start at the thin lines and increase to the edge
of the DVR grid.R and r are shown in atomic units.

k(T) ) Qr(T)
-1∫0∞dt Crp(t) (2.3)

Crp(t) ) tr[e-âĤ/2F̂re
-âĤ/2eiĤt/pF̂pe

-iĤt/p] (2.4)

F̂r(â) ) e-âĤ/2F̂re
-âĤ/2 (2.5a)

F̂r(â) ) ∑
i

λi|Vi〉〈Vi| (2.5b)

k(T) ) Qr(T)
-1∑

i

λi∫0∞dt 〈Vi(t)|F̂|Vi(t)〉 (2.6)

|Vi(t)〉 ) e-iĤt/p|Vi〉 (2.7)

e-i(Ĥ-iε̂)∆t =

e-i(V̂-iε̂)∆t/2 e-iT̂γ∆t/2 e-iT̂R∆t e-iT̂r∆t e-iT̂γ∆t/2 e-i(V̂-iε̂)∆t/2 (2.8)

T̂R ) ÛFFT
† diag(-p2(j - NR/2)

2µ∆R2 )ÛFFT (2.9a)

T̂r ) ÛFFT
† diag(-p2(j - Nr/2)

2m∆r2 )ÛFFT (2.9b)

T̂γ ) ÛLeg
† diag(-p2J(J+ 1)( 1

2µR2
+ 1

2mr2))ÛLeg (2.9c)
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the number of thermal flux eigenvectors included is determined
by the temperature alone. AtT ) 600 K 20 eigenvectors were
propagated and atT) 1000 K 40 eigenvectors were propagated.
The real-time propagation of the eigenvectors is the most time
consuming part of the calculation. These calculations were
carried out on a Cray T3D parallel computer and required
approximately 1 h/eigenvector in the 64 processor queue.
The dividing surface for reactants (O+ OH) is defined byr

) 6.5 a0 and that for products (H+ O2) by R ) 6 a0. The
same dividing surfaces were used for all calculations. As in
several other studies of HO2 we use the DMBE IV potential
energy surface of Pastranaet al.30 for our calculations.
Absorbing potentialsε̂(q) were placed just beyond each of

these dividing surfaces to prevent reflection of reactive flux from
the edge of the DVR basis. The reactant and product absorbing
potentials start atr ) 7.2a0 andR) 6.8a0, respectively. Both
are quartic potentials which rise from zero to a maximum of
0.3 to 0.5 eV. Figure 1 shows a schematic of the dividing
surfaces and absorbing potentials.
Figure 3 shows typical results for the flux correlation function,

here forT ) 600 K and for several values of totalJ. The∼1
ps time scale for the decay of the correlation function,i.e., the
lifetime of the collision complex, is seen not to vary much with
J.

III. Approximate Treatments for J > 0

A. The Helicity Conserving Approximation. Figure 4
shows the Jacobi coordinates that we usesr is the O-O
coordinate andR is that of H and the center of mass of O-Osin
terms of which the Hamiltonian has the standard form

where

l̂ and ĵ are the angular momentum operators for theR and r
angular motion, respectively, andV is the potential energy
surface. The usual helicity (orjz) conserving approximation31

is to chooseR as the body-fixed quantization axis and to assume
that the projection of total angular momentum along it is
conserved,i.e., to neglect off-diagonal matrix elements in the
quantum numberK, the projection quantum number for this
body-fixed axis.
This would be a poor choice for the present reaction, however,

because the kinematics of the light H atom makes this
component of the total angular momentum poorly conserved
during the dynamical motion. Choosing the best body-fixed
axis for purposes of making a helicity conserving approximation,
i.e., neglect of∆K * 0 matrix elements, is the same choice
microwave spectroscopists make in deciding on the best “almost
symmetric top” axis for molecular rotation;32 e.g., if the body-
fixed axis were indeed a symmetric top axis, thenK would be
conserved without approximation. From these considerations
it is clear that because of the light mass of the H atom a much
better,i.e., nearly symmetric top, choice for the body-fixed axis
is the O-O axis,i.e., the vectorr . This idea of using the heavy
atom axis in a “heavy+ light-heavy” mass combination has
often been used in the past,33 the analogy of the electron in
H2

+ often being invoked. We also note that it was used by
Thompson and Miller in their treatment20 of the O+ HCl f
OH + Cl reaction.
With r thus chosen as the body-fixed axis, one follows Van

Vleck’s prescription and uses total angular momentum conser-
vation to eliminate the angular momentum for this axis (ĵ).

so that the Hamiltonian becomes

The HCA is obtained by taking the part of the Hamiltonian
diagonal inK, which gives

where

Figure 2. The positive thermal flux eigenvalues at 600 K and 1000 K
for J ) 0 for the dividing surface at the O‚‚‚OH transition state.

Figure 3. The cross correlation functionCrp(t) for several values ofJ.

Figure 4. The Jacobi coordinates for the molecular system.

Ĥ ) T̂R + T̂r + l̂ 2

2µR2
+ ĵ 2

2mr2
+ V(R,r,γ) (3.1)

T̂R ) - p2

2µ
∂
2

∂R2
, T̂r ) - p2

2m
∂
2

∂r2

ĵ ) Ĵ - l̂ (3.2)

Ĥ ) T̂R + T̂r + l̂ 2

2µR2
+ |Ĵ - l̂ |2

2mr2
+ V (3.3)

ĤJK ) ĤJ)0 + EJK(R,r,γ) (3.4a)

ĤJ)0 ) T̂R + T̂r + T̂γ + V(R,r,γ) (3.4b)
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with

and

The effective potential energy surface forJ > 0 alluded to in
section II is thus

the actual potential plus a centrifugal potential that is the
rotational energy of the molecular complex as a function of the
coordinates (R,r,γ) that determine its shape. We note thatEJK
can also be written in standard symmetric top form,

where the rotational “constants” are (withp ) 1)

B. The J-Shifting Approximation. The J-shifting ap-
proximation (JSA) results by assuming that the rotational
constants in eq 3.6 are truly constants,

corresponding to some reference geometry (Rq,rq,γq). Since the
Hamiltonian forJ > 0 then only differs from that ofJ ) 0 by
a constant, it is easy to see that the equations in section II lead
to

where

The sums overJ andK in eqs 1.1 and 2.1 then give

whereQrot
q is the rotational partition function,

which is usually accurately approximated by its classical limit

if Bq and Cq e kT.

At the level of the JS approximation it is not neccessary to
assume that the rigid molecular system has a symmetric top
geometry. If it is that of an asymmetric rotor,i.e., all three
rotational constants,Aq, Bq, and Cq are different, then the
classical partition function of eq 3.8e becomes

which can be thought of as the same as the symmetric top

expression eq 3.8e with the replacementBq f xAqBq.
C. Principal Axis Helicty Conserving Approximation.

For the present molecular system the O-O axis r is a very
nearly symmetric top axis because of the lightness of the H
atom, but in other cases it may be that neitherR nor r is a
good choice. Thus some years ago McCurdy and Miller34

suggested using one of the instantaneous principal axes of the
molecular system as the body-fixed axis for purposes of making
a HC approximation. This was motivated by the way micro-
wave spectroscopists32 make the “best symmetric top” ap-
proximation for molecular rotation and also by the desire to
have a body-fixed axis that changes continuously from reactants
to products during a chemical reaction.
McCurdy and Miller used the classical form of the Hamil-

tonian, obtained by taking the classical limit of the quantum
Hamiltonian operator given by Diehl35 et al.,

where qK is the angle variable conjugate to the projection
“quantum number” (actually action variable)K, and the other
coordinates and moments are as before.Ji, i ) 1, 2, and 3, are
the components of the angular momentum along the three
instantaneous principal axes, andIi are the corresponding
principal moments of inertia, ordered so thatI1 < I2 < I3 ) I1
+ I2 (for this planar molecular system); specifically

The vibrational angular momentum terms∆pR, ∆pr, and∆pγ
in eq 3.9 are given by

and if principal axis 1 (the one with the smallest moment of
inertia) is chosen as the body-fixed quantization axis, then

T̂γ ) -p2( ∂2
∂γ2

+ cotγ ∂
∂γ)( 1

2µR2
+ 1

2mr2) (3.4c)

EJK(R,r,γ) )
J(J+ 1)- 2K2

2mr2
+ K2

sin2 γ( 1

2µR2
+ 1

2mr2)
(3.4d)

VJK(R,r,γ) ) V(R,r,γ) + EJK(R,r,γ) (3.5)

EJK(R,r,γ) ) B(R,r,γ)(J(J+ 1)- K2) + C(R,r,γ)K2 (3.6a)

B(R,r,γ) ) 1

2mr2
(3.6b)

C(R,r,γ) ) ( 1

2µR2
+ cos2 γ

2mr2 )/sin2 γ (3.6c)

B(R,r,γ) f Bq ≡ B(Rq,rq,γq) (3.7a)

C(R,r,γ) f Cq ≡ C(Rq,rq,γq) (3.7b)

kJK(T) ) kJ)0(T)e
-âEJKq

(3.8a)

EJK
q ) Bq(J(J+ 1)- K2) + CqK2 (3.8b)

k(T) ) kJ)0(T)Qrot
q (3.8c)

Qrot
q ) ∑

J)0

∞

(2J+ 1) ∑
K)-J

J

e-âEJKq

(3.8d)

Qrot
q ) kT

BqxπkT
Cq

(3.8e)

Qrot
q )xπ(kT)3

AqBqCq
(3.8f)

H(R,pR,r,pr,γ,pγ,K,qK) ) 1
2µ
(pR - ∆pR)

2 + 1
2m

(pr -

∆pr)
2 + ( 1

2µR2
+ 1

2mr2)(pγ - ∆pγ)
2 + V(R,r,γ) +

J1
2

2I1
+

J2
2

2I2
+

J3
2

2I3
(3.9)

I2 - I1 ) x(µR2)2 + (mr2)2 + 2µR2mr2cos(2γ) (3.10a)

I2 + I1 ) µR2 + mr2 (3.10b)

∆pR ) -J3
2I1I2

(I2 - I1)
2

cosγ
R

(3.11a)

∆pr ) J3
2I1I2

(I2 - I1)
2

cosγ
r

(3.11b)

∆pγ ) -J3
2I1I2

(I2 - I1)
2

(µR2 - mr2) sinγ
I1 + I2

(3.11c)

J1 ) K (3.12a)
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The classical version of the HC approximation, which corre-
sponds to the quantum prescription of taking the matrix elements
of Ĥ diagonal inK, is obtained byaVeraging the classical
Hamiltonian over the angle variableqk. In doing this, McCurdy
and Miller neglected the contribution from the vibrational
angular momentum terms, but it is not necessary to do so. The
averaging process is straight forward,

so that

and it is not hard to carry this out to obtain an HC Hamiltonian
of the same form as eq 3.4a,

whereHJ)0 is the same as eq 3.4b and here

In the limit µR2 , mr2 it is not hard to show that the rotational
constants in eq 3.14 revert to those in eq 3.6.
D. Some Further Thoughts onJ > 0 Approximations.

The helicity conserving approximations discussed above try to
identify a body-fixed axis which is an almost symmetric top
axis for the molecular geometries relevant to the dynamics, so
thatK (the helicity) is conserved during the dynamics, speaking
classically, or a good quantum number, speaking quantum
mechanically.
From a very different perspective Bowman36 has suggested

using anadiabatic rotation(AR) approximation, which would
be justified dynamically if the rotational motion,i.e., qK,
classically, were fast compared to the internal (R,r,γ) motion.
In this case one proceeds as in the Born-Oppenheimer
approximation,i.e., freezes the (R,r,γ) degrees of freedom and
solves for the rotational energy levels of the (in general)
asymmetric rotor,EJ,τ(R,r,γ), as a function of the internal
geometry. The Hamiltonian for the internal motion is then

i.e., of the same form as that for the HCA, eq 3.4 or eq 3.13. In
fact, if the asymmetric rotor energy levels are approximated as
an almost symmetric topswhich is often a very good
approximationsthen

which is then identical to the principal axis HC approximation
if the vibrational angular momentum terms are neglected (as
McCurdy and Miller originally did).
To complete this discussion the range of possible approxima-

tions forJ > 0 it is useful to consider the opposite limit for the
rotational motion, namely that it is muchslowerthan the internal
(R,r,γ) motion. This is the rotational sudden approximation
(SA) which has a long history in molecular collision theory.37

In the present context this would mean freezing the rotational
variables (J,K,qK) in the Hamiltonian eq 3.9, computing the rate
constant as a parametric function of these variables, and then
averaging that result over the variables for the rotational degrees
of freedom. The net rate constant would thus be given by

wherek(T; J, K, qk) is the rate constant computed from the
Hamiltonian that depends parametrically on (J, K, qK):

where we have for simplicity dropped the vibrational angular
momentum terms (they could be retained if desired). This
approximation is somewhat more costly to implement than the
PA/HCA because the result of the calculation now depends on
the three parameters (J, K, qK) rather than just two, (J, K). In
the symmetric top limit,I2 = I3, however, one sees that theqK
dependence in eq 3.17c disappears and one is again back to the
same expression as the PA/HCA. Thus if the internal dynamics
is confined to molecular geometries that are well approximated
as a symmetric top, one obtains the same effective Hamiltonian
whether rotation is treated as fast or slow. Finally, it is easy to
show that eq 3.17a for the sudden approximation can be written
as

with

which makes it clear that this approximation is completely
independent of how the body-fixed axis is chosen;e.g., it is
not even necessary in eq 3.18b that the inertia tensor be diagonal.
By evaluating the integral overJ in spherical coordinates (J, θ,
φ),

one can show that eq 3.18a is equivalent to eq 3.17a.

IV. Results and Discussion

The HCA described in section IIIa was used for theJ > 0
calculations reported here. This should be an excellent ap-
proximation for this reaction because the O-O axis is such a
good “almost symmetric top” axis;e.g., in Table 1 one sees
how close are the two smallest rotational constantsAq andBq

J2 ) xJ2 - K2cosqK (3.12b)

J3 ) xJ2 - K2sinqK (3.12c)

〈‚‚‚〉 ≡ 1
2π∫02π

dqK‚‚‚

〈K〉 ) K

〈sinqK〉 ) 〈cosqK〉 ) 0

〈sin2 qK〉 ) 〈cos2 qK〉 ) 1/2

HJK(R,pR,r,pr,γ,pγ) ) HJ)0 + B(R,r,γ)(J2 - K2) +

C(R,r,γ)K2 (3.13)

C(R,r,γ) ) 1
2I1

(3.14a)

B(R,r,γ) ) 1/4(1I2 +
I2 + I1

(I2 - I1)
2) (3.14b)

ĤJτ ) ĤJ)0 + EJτ(R,r,γ) (3.15)

EJτ(R,r,γ) f B(R,r,γ)(J(J+ 1)- K2) + C(R,r,γ)K2 (3.16)

k(T) )∫0∞dJ 2J∫-JJ dK∫02πdqK
2π

k(T; J, K, qk) (3.17a)

H(J, K, qK) ) HJ)0 +
J1
2

2I1
+

J2
2

2I2
+

J3
2

2I3
(3.17b)

) HJ)0 + K2

2I1
+ (J2 - K2)(cos2 qK2I2

+
sin2 qK
2I3 ) (3.17c)

k(T) ) 1
2π∫d3J k(T; J) (3.18a)

HJ ) HJ)0 + 1
2
J‚I (R,r,γ)-1‚J (3.18b)

∫d3 J )∫0∞dJ J2∫0πdθ sinθ∫02π
dφ (3.19)
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at both the geometry of the HO2 minimum and the O‚‚‚OH
transition state. One also sees how close are the exact rotational
constants of the O‚‚‚OH transition state and those implied by
the HCA (eq 3.6) at this geometry.
Within the HCA, however, the calculation ofkJK(T) for each

(J, K) is equivalent in effort to thekJ)0(T) calculation, which is
itself already a very expensive calculation due to the the small
grid spacing that is necessary because of the deep potential well
and also the long propagation times resulting from the long-
lived complex. It is therefore very important to minimize the
number of (J, K) values for which calculations are actually
performed. To this end the (J, K) dependence ofkJK(T) was fit
to the following functional form

which is sufficiently accurate for the range ofJ andK values
that contribute. Adding terms of higher order inJ andK did
not affect to result for the total rate constant. Between 15 and
19kJK(T) were calculated to perform this fit at each temperature.
The values ofa, b, B, andC determined from the fit and used
for the interpolation are given in Table 2. The sum overJ and
K to obtain the total rate thus gives the same form as the JSA:

where here

Table 3 lists the rate constants given by the HCA atT) 600
and 1000 K, and also those given by the JSA with two possible
choices of the reference geometry, that of the HO2 minimum
and that of the O‚‚‚OH transition state. (Here we note an error
in the use of the JSA in our previous paper;1 the rotational
constants used there for the HO2 minimumsAq ) 0.572 cm-1,
Bq ) 0.589 cm-1, Cq ) 18.94 cm-1sare in error; the correct
values are those in Table 1.)
Comparing the (presumably) accurate HCA results with those

of the JSA in Table 3, one sees that the JSA is not badsthe
rate constant agrees with that of the HCA to 10-20% for this
temperature rangesproVided one uses the O‚‚‚OH transition
state as the reference geometry for the rotational motion. For
a “direct” reaction it is commonly believedswith some ex-
amples to support it16,38sthat the transition state geometry is
the best reference geometry for the JSA, but since the collision

complex (HO2
q) spends most of its time in the region about the

HO2minimum, it was not obvious that this latter geometry might
not be a better choice in this case. The minimumdoesseem to
be the best choice for the JSA in describing resonance energies39

of the HCO complex, a very similar system. For the rate
constant, however, we see that in this case, too, the transition
state geometry is the best choice for the JSA.
This latter observation,i.e., that the transition state geometry

provides the best choice of reference geometry for the JSA in
both “complex-forming” as well as “direct” reactions, is thus
an encouraging one, for the JSA is by far the simplest way of
dealing with J > 0 if the choice of reference geometry is
unambiguous. The full dynamical calculation is then required
only for J ) 0, an enormous simplification. It is important,
however, to have the possibility of carrying out more accurate
treatments ofJ > 0, as discussed in section III, to calibrate its
reliability, as in the present application.
Finally, we note from Table 3 that the rate constants given

by the HCA (and the JSA with the O‚‚‚OH reference geometry)
with this potential surface are in quite good agreement with
the experimental values. To pursue matters further, it would
be useful to utilize the more recent and presumably more
accurate potential energy surface developed by Kendrick and
Pack40 and also to deal explicitly with the electronically non-
adiabatic dynamics arising from the spin-orbit coupling in this
system.
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